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A Generalization of B.S. Clarke and A.R. Barron’s
Asymptotics of Bayes Codes for FSMX Sources

Masayuki GOTOH!, Toshiyasu MATSUSHIMA', and Shigeichi HIRASAWA', Members

SUMMARY We shall generalize B.S. Clarke and A.R.
Barron’s analysis of the Bayes method for the FSMX sources.
The FSMX source considered here is specified by the set of all
states and its parameter value. At first, we show the asymp-
totic codelengths of individual sequences of the Bayes codes for
the FSMX sources. Secondly, we show the asymptotic expected
codelengths. The Bayesian posterior density and the maximum
likelihood estimator satisfy asymptotic normality for the finite
ergodic Markov source, and this is the key of our analysis.

key words: Bayes code, source coding, universal coding, univer-
sal modeling

1. Introduction

Bayes coding[2],[7], whose codelength is also called
stochastic complexity[9] is Bayes optimal solution
based on Bayes decision theory[7]. This is the method
which uses mixture probability of all models in model
class for coding function.

The properties of the Bayes code have been stud-
jed from various viewpoints[2],[3],[6],[7],[97,[10],
[13]. B.S. Clarke and A.R. Barron analyzed asymptotic
mean codelength of the Bayes code[2] and showed that
Jeffreys prior is asymptotically least favorable under en-
tropy risk [3] for i.i.d. parametric sources. Recently, the
efficient algorithms which calculate the mixture proba-
bility of the data sequence similar to the context tree
weighting (CTW) method have been reported for the
FSMX model class[6],[8]. Since the FSMX sources
are not i.i.d. sources, the analysis of codelength for the
FSMX sources is important.

In this paper, we generalize the part of Clarke
and Barron’s analysis of the Bayes code for the (er-
godic) FSMX sources. The FSMX model class is one
of the partial nested model class. At first, we show
the asymptotic codelengths of the Bayes codes for in-
dividual sequences for the FSMX sources. J. Rissanen
have advocated the stochastic complexity and the uni-
versal modeling and he stated in [10] such that in-
stead of measuring a code’s performance by mean code-
length as in universal coding, the central question of
interest in universal modeling is the codelength achiev-
able for individual sequences. Then an analysis in this
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paper of the Bayes codelengths for the individual se-
quences will be important for this concept. Secondly, we
shall prove that Clarke and Barron’s asymptotics of the
Bayes code (Expected codelength) are generalized for
the FSMX sources which are useful for the source cod-
ing in practice. The key of the analysis is that the pos-
terior probability of the parameter satisfies asymptotic
normality. Clarke and Barron have described in [2]
that their asymptotics can be intuitively stated from the
asymptotic normality. Generally speaking, the asymp-
totic normalcy of posterior distribution holds for other
than i.i.d. sources[1],[4]. We directly use the asymp-
totic normality for the analysis and show the similar
asymptotics are satisfied for the FSMX sources.

2. Preliminaries
2.1 The FSMX Sources

Let X = {0,1,2,---, 8} be the discrete source alphabet.
We denote the data sequence with length n emitted from
the source by £ = z1z9 - Tp, Where Vi, z; € X'. A"
is the set of all £™. We also denote the infinite data
sequence by z°°.

An FSMX source model m is specified by the set
of the states and is represented by a (8 + 1)-ary com-
plete tree T'(m) called a context tree*. Each arc in tree
corresponds to a symbol z € X. A path from a leaf
to the root in the tree represents a context or state in
the FSMX model. The state of an FSMX model at ¢
is determined by the source sequence z!~!. We denote
this mapping from ‘=" to a state of the FSMX model
m by @m(xzt™1). Let s(m) be a state of model m, and
S(m), the set of all states in m. S(m) also represents
the set of all leaf nodes in the context tree 7'(m).

An FSMX model determines the parameter space.
Then, we denote the k,,-dimensional parameter and the
parameter space by #%~ and ©F= respectively.

We assume ©F= = (0,1)*~, where (0,1)*" repre-
sents interior of the k,,-dimensional rectangle with sides
[0,1]. Let 953" be the probability of the symbol ¢ at the
j-th state sj’ (m), and gqg,(m), the stationary probabil-
ity of the state s;(m) calculated by 0%, where i € X

*Since the FSMX model is one of the Markov model,
the probability structure is determined by the set of the states
and the transition probabilities.
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Fig. 1  An example: T'(m1).
andj =0,1,---,[S(m)| — 1. We may regard #*~ =

(000, --,9; 1,|8(m)|— _)* as 8|S(m)|-dimensional con-
tinuous parameter, that is k,, = 3|S(m)|.

The probabilistic structure of an FSMX model m
is represented by the conditional probabilities of x;
given z'~! denoted by P(z;|z*~*, m, 0%"), where #%= is
B|S(m)|-dimensional parameter vector representing the
probabilities of each symbol at each state of m. The
notation P(-) stands for the probability.

The probability of the next symbol z; given by z?~!
is

P(xt(mt_l,m,ﬁkm) = P(a:t|<pm(wt_1),m,9km). (1N

In Fig. 1, we show the context tree of an FSMX
model m; for binary alphabet, 8 = 1.

Since the context z'~1 = ...10 is represented by
the path from the leaf node s; to the root, the state
determined by the context corresponds to the leaf s;.
The S(ml) is given by {so(ml),sl(ml),SZ(ml)}. If
2% = 10010, then the state at t = 2 is s2(m1) = @, (1),
the state at t = 3 is s1(m1) = ¢m, (10), the state at
t = 4 is so(m1) = @m,(100) and so on. The parame-
ter GFm1 of the FSMX model my in Fig.1 is glven by
(On5", 8572, 053 )" = (P(0]00), P(0]10), P(0}1))” and
k™ = 3.

The set of m is denoted by M. M is a finite count-
able set. We assume that the data sequence is derived
from the true model m* with the true parameter §%m= .
We also assume that the true model m* exists in M
and m* has (finite) ™ —dimensional parameter 6= .
The true stationary probability q; on S(m*) is spec-

ified by #*=*. An FSMX model m specifies a paramet-
ric model class. Let H*m be this model class of m:
HEm = {P(|m,0%n)|0%~ ¢ ©F=}. Then the FSMX
model class H is defined by

H = UpH, 2

(m*)

where, the nested structure
HFmr C HEm2 C HEms C-ey (3)

is partially satisfied for m1,m2,--- € M. That is, the
model set M has partial order.
Remark the fact such that if H*=* does not equal

to H, then there exists m 4 m*, 0%~ that satisfies
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P(z™|m, 0%n) = P(z"|m*,0%=+). Then, we redefine the
true model m* as follows:

m* =

arg,, min {km(ﬂgkm, vz, P(z"|m, %) = P*(:c")} ,
4)

where P*(z™) is true distribution from which the
data sequence z” is derived. Of course, P*(:) =
P(m*,6%=~). We also denote the model class by
{P(:|m,6F=)|m € M, 0% c ©Fm}.

We assume the initial state is known. Let n(m), e

n|(5(2n)|—1 be appearance numbers of the states so(m),

“* 8|5(m)|—1(m), and néﬁ),nﬁ”}’, (ﬁj), appearance

numbers of the symbol 0,1,---,83 condltloned by the
state s;(m) in data sequence z™. Thatis,n =3, ng-m)

and ngm) = an(zl) Then the likelihood function

P(z™|m, 0%m) is given by

m)[-1 B (m)
H H( Py (5)

where 9’“”" =1- ZB ! 95"3", and this function has an

unique max1mum The elements of the maximum like-
lihood estimator of §%=, k= are given by
(m)
Gl _ i
0;r = oy (6)

7

P(z"m, k)

We define the information matrix 7(6%m|m) such as
&% log P(z™|m, §%m)
00k (95T

1(6%|m) = (7

where E* represents the expectation by P(:|m*, 6%m+).
That is, I(Okm|m) of the FSMX source is given by

Zw e (m)9
0OFm (5fFm )T

If m = m* and 6%~ = @%n~, then I(f*m=|m*) reduces

log@ b
I(0F|m) =

(8)

to the Fisher information matrix and det I(8%m= |m*) is
given by
det I(@Fm |m™)
|S(m*)|-1 §
= (q;(m*)) = )
j=0 oy 01 O
respectively. ‘

The FSMX model is one of the finite ergodic
Markov model class, and the following property has
been known.

Lemma 1 (The iterated logarithm law[5]): For  the
true model m*, we have

o & loglogn 1/
Gimr = 0" O | | ——— , a.s.  (10)
n



GOTOH et al: A GENERALIZATION OF B.S. CLARKE AND A R. BARRON'S ASYMPTOTICS OF BAYES CODES

T(m)

so(m)

Oors
so(m™) s1(m*) sy(m)  sa(m)
B gk n n
0% Oo% o5y 063

Fig. 2 An example of 65m.

(m”*) 1/2

ng log |

J :q;_(m*)w((ﬂgj) ) ws.
n 7 7

(11)

where a.s. represents almost sure convergence' . ]

Next, we consider the case such that the parame-
ter %= of m % m* is estimated from ™. We define
95’; for m + m* as follows: If a leaf of a state s;(m)
of T(m) corresponds to a leaf of s;(m*) of T(m*) or
is a descendant leaf of an intermediate node of T'(m)
corresponding s;(m*) of T(m*), then we define

kX kX«
91,3‘ = 91.,? . (12)

Else if a leaf of a state s;(m) of T'(m) corresponds to
an intermediate node of T'(m*), we define

k kY « q: m*

0.7 = > 0,7 _*L)— (13)
s1(m*)ES(4,m,m*) qS(j,m,m*)

where S(i,m,m*) is the set of all descendant leaf of
the intermediate node of T'(m*) corresponding to s;(m)
n sy (m*)e8(j,m,m*) q:l(m*)' An ex-
ample of %= for m + m* is shown in Fig.2. From

and G5(;m me) =

above definition, we have 9’0“:5 = ﬁ% (’)“:8* +

%2y (m)
oo (m*) T 05 (m*)
Fig.2. Then, from the property of the multinomial dis-
tribution, we can regard gkm as the true parameter from
which z" is derived on condition that m is fixed. From
Lemma 1, we can see that the following corollary is

clearly satisfied.
Corollary 1: For Vm € M, we have

AL & loglogn 1/2
g =0 +0 | | ——— , .8 (14)
n

(m) 1/2
A (m)w((M) ) ws. (15)
n J n

O

0o and 07 = Oy = 6y for m in

2.2 The Bayes Code for FSMX Model Class

In this paper, we discuss ideal codelength —log g(z™).
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We call g(z™) coding function. We suppose that the
logarithm base is e and the measure of the codelength
is nats through the paper.

Let P(m) and f(6%~|m) be prior probability of
model m and prior density of parameter 6= respec-
tively. Through the paper, f(-) represents the proba-
bility density function. P(z"|m) and f(6%~|z"™,m) are
given by

P(z"m) = /ek P(z"™m, 0Fm) f(0%m |m)do*, (16)

P(z"|m, §") f(*|m)
P(z"|m) ’

F(OF|z™,m) = (17)

respectively. Finally, we define the Bayes code for the
FSMX model class.

Definition 1 (The Bayes code): The codelength of the

m,Okm
€ LBayes

Bayes cod (z™) is given by

0%
Lrgayc:sl (wﬂ)

=— logz /9}c P(z"|m, 0% ) f(0F™ | m) P(m)de*
=—log»_ P(z"|m)P(m). | (18)

Here, the summation and the integral are calculated
through M and ©F~ respectively. |

3. Main Results
3.1 Condition

We assume the following condition.
Condition 1:

i) ©Fm = (0,1)F= for Vm € M and %= € OFm".

ii) For ¥m € M and V0F= € ©Fn  f(6%=|m) > 0.
And P(m*) > 0.

iii) ForVm € M, f(6%m|m) is three times continuously
differentiable for % in ©%m.

Remark 1: Here, we consider about Condition 1, iii).
For example, the Dirichlet distribution which is the con-
jugate prior for the multinomial distribution class is
obviously three times continuously differentiable. This
prior is useful for an FSMX model class[8].

3.2 Asymptotic Normality of Posterior Density

At first, in order to show the main theorem, we quote

t“x, — X, as” means P{|X, — X| > ¢
infinitely often} = 0 for Ve > 0. This is equivalent to
P*{X, — X} = 1. And the description such as “|Xn —
X| £ ¢, a.s. when n — o0” also means P*{|X» — X| >
¢, infinitely often} = 0.
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the following lemma from [1], pp.285-297. The fol-
lowing lemma shows the asymptotic normality of the
posterior density f(6%m|z™ m) on ©F~ when we regard
0%~ as the random variable.

Lemma 2 ([1],[4]): Fix an infinite sequence 2*°. And
let 6% be a strict local maximum of L, (0%~ |m) =
log f(6%m|z™ m) satisfying

Ly (% {m) = 0, (19)

and implying positive definiteness of

5=~ (L4 m) (20)

where L/ (0%~ |m) and L/ (6%=|m) are defined by
 OL (05 m)

L (§%m ) 21

7 (07 m) Fa I (2D
~ 8L (G’C"le)

"¢ nkom — n 22

L,(6 tm) 50Fm (86F=)T o — ’ (22)

respectively. Defining Bs(6%") = {6~ € @Fm|||gFm —
0% || < &}, the following three basic conditions are nec-

essary and sufficient for the asymptotic normality of the
posterior distribution.

(c.1) “Steepness” lim, .. 62 — 0, where 72 is the
largest eigenvalue of X3,,.

(c.2) “Smoothness” For any ¢ > 0, there exist N and
6 > 0 such that, for any n > N and 6~ ¢
Bs(6%m), L!(9%~) exists and satisfies

- ~1
1 - A(e) < Ly (0% m) {38 m) }
< T+ Ale), (23)

where [ is the k,,, X ky,, identity matrix and A(e) is
a kn, x ky, symmetric positive-semidefinite matrix
whose largest eigenvalue tends to 0 as € — 0.

(c.3) “Concentration” For any § > 0, there exists N
and ¢, d > 0 such that, for any n > N and
0Fm ¢ Bs(Fm),

ankam) - Ln(ékm|m)
y y d
< —c{(ﬂkm — GEm YT (ghm 9’%)} :
(24)
The conditions (c.1), (c.2), and (c.3) imply that’

f(O" 2", m) (det 35,)'"* = (2m) /% 1-o(1). (27)

O
In above lemma, (c.1), (c.2), and (c.3) are the con-
ditions for a sequence of f(0*|z™ m), n =1,2,--- for

the fixed °°. In fact, ™ is emitted from P*(z™) and we
should discuss the convergence based on the probability
theory. Therefore, we shall show that the conditions of
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above lemma are almost surely satisfied for the FSMX
sources in the following't:
Since 1 L, (0%") = Llog f(6*~|z™,m) is given by

1
ELn(ka|m)
(m)
_ N Ty ko | L km
= Z Tlogﬁm + Elogf(& |m)
,L’j
1
— —log P(z™|m), (28)
n

where f(6%m|m) does not depend on n. Therefore

L (6 m)

{m) _(m)
N Ty B, 1 "
_’Zn(m ,logt;F — ~log P(z"|m), (29)
2.7

J

and log P(z™|m) does not depend on #%= §%= maxi-
mizing L L, (0% |m) converges to G5
From Condition 1, iii),

2L, (6% |m)

6% (55 )T
(m) 1y phoe
_ Xy g 0T 8%log £(64m |m) (30)
Gk 80k )T 80Fm (6% )T

(m) .
. . . k . nz,] * k
is differentiable for 6°~. Since —22- — U, ()03 a-s-

is satisfied from Corollary 1, we have

n

™)
m Forn ,g o
3, n{ log 5 _ Py, - log6;

2]
00%m (89km )T 8G%m (96km )T
2 * k., km
0 Z” qu(m)ﬁi’j logﬁm 3
— 0 (865 . a.s. 31

8% log f(8*m|m)
80Fm (9Fm)T

1
n

is differentiable from Con-

.. 1 82Ln(6%™ |m)
dition 1, iii), and does not depend on n, 7 D0Fm (80Fm YT

Then, because

fMoreover, on (c.1), (c.2), and (c.3), when we regard
%™ as the random variable drawn from f(6%™|z™ m), the
density of pkm = 5712 (9Fm —gFm) | £, (¢F (2™, m), satisfies

/ Fo(ohm 2™, m)dgEm
R

— W_kM/ZeX _1 Em\T 1 km Ko
/R(2) p{-3@)"¢ bag, @2)

where R is an arbitrary rectangle and fs (5™ |z™, m) is given
by ‘

fo(gnm|z™,m) = (det £n)"? F(6°™ |z, m). (26)

This means the asymptotic normality of the posterior
density. ‘

" OFf course, almost sure satisfaction of (c.1) to (c.3) im-
plicitly depends not only on the prior but also the proba-
bility measure on X",
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converges to I(6%=|m) almost surely from (8). We have
therefore

L0 m) { L@ lm)}
18 m) { 15 |m)}—l as, (32)

On the other hand, from the continuity of I(6*¥=|m),
there exists 6 > 0 such that

I — A(e) < I(0%|m) {I(é’“m im)}_l < 1+ Ae),
(33)

for Wo*m ¢ Bg(f%m) if §%= is fixed. Then, from ¢
—s fkm — GFm | a.s., (c.2) is almost surely satisfied when
n — co.

Moreover, since limg,— n( ™)

3J
smallest eigenvalue of ;—fEaTTLT;) tends to oo almost

— o0, a.s., the

surely. This means that (c.1) is also almost surely satis-
fied.

On the other hand, Ln(6%m|m) — L, (0%|m) is
given by

Ly (8% |m) — (5’°'"lm)' |
GFm
= Zn log :J +log w (34)
0;5 f(@Fm|m)
where 65 = (0106,73,01,0,-~-,égrjl,‘s(m”_l)T. From
Taylor expansion, we have
Ln(9'“"‘|m) = La(8°m)
AL, (6% |m
fkm =0km+

where 0F=+ is a point on the line segment between 6

and 6%~ . Here, L %ﬂ satisfies
Qkm =0km+
1 8L, (0% |m)
m 69]‘5111. Qkm =Qkm+
19X, Vlog 07 1 0log f(6%™|m)
n Hgkm n OGkm
Prm =gkm+
62 qS m 7 ].Ogg
b 5930 ) . a.s. (36)
Glrm —glem +

(m) .

since “ii- — qu(m)efj , a.s. is satisfied and f(OkM|m)
is three tlmes continuously differentiable. The last term
of (36) is reduced to 0 only when gkm+ = @km_ On the
other hand, %= € Bs(f*=) is almost surely satisfied

when n — oo. Therefore, there exists cs > 0 such that
1 9L (6" |m)
cs OLn (07 |m)
< H B6Fm | gl — gl +
m & Bs(6"™). We have therefore

L (8% m) —

‘ , a.s. when n — oo for

L (8% |m)
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< [J0% — | 4 (05 ) cos
< _n%“gkm — 0" a.s. (37)

when n — oof. Here, 1 is an angle between g%m — §Fm
and L/, (§F=+|m).
On the other hand, there exists ¢y such that ¢ <

¢y, @.S. when m — 0o, where 1) is the largest eigen-
value of 151 because 13,1 — I(6¥~|m), a.s. and

gkm — gkm — @Fm. a.s. Therefore, there exists csy
such that

L (0% |m)

< —esp { (65 — 6*)

— Ly (6" |m)
1/2

TE;Ll (gkm B ékm)} 7

a.s. (38)

when n — oo, and hence (c.3) of Lemma 2 is satisfied
almost surely.

Since (c.1), (c.2), and (c.3) are satisfied and
limy oo 2571 = I(6%|m), a.s., we have the follow-
ing lemma from Lemma 2.

Lemma 3: For Vm € M, we have

_ n N km/2 -
F(@F |z m) = (5;) det I (%= |m)

-+ o(nkm/Q), a.s. (39)

O

In [1] and the above lemma, the asymptotic nor-
mality around gkm has been proved. Moreover we can
show that the similar asymptotic is satisfied for gFm in-
stead of @5~ from the same discussion as Lemma 3 and
[1]. The result using %~ is useful for the analysis of
the expected code length because the property of the
asymptotic normality of the maximum likelihood esti-
mator 6%~ is well known and can be used.

Lemma 4: For Vm € M, we have

Ak‘m n —_— i km/z Akm

f@* |z, m) = (27r> det I(6%m|m)
+o(n*m/?),  as. (40)

Proof: See Appendix A. O

3.3 Codelengths for Individual Sequences

From Lemma 4, we have the following theorem.
Theorem 1: On Condition 1, for Vm € M we have

—log P(a"m, 0*) + 2 log 2
~log P(a"|m, ) + " Tog .-

—log P(z"lm) =
det I(6Fm|m)
f (@ |m)

= —log P(z"|m, §*)

+ log +0o(1), a.s.

+km1 n
B o0
2 ®or

tSimilar discussion is appeared in [1], pp.293-294.
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det I(GFm|m)

1 —
T G )

+0(1), a.s.
(41)
Proof: From the Bayes rule, we have

P(a|m, 6*) f (%~ |m)
[ (@ |zm,m)

—log P(z"|m) = —log

(42)
From (40), we have
log f (6% |=™, m)

_km n .
= 7log o +log 1/ det I(6%=|m) + log<1 —|~o(1)>,

a.s. (43)

Similarly, we have the first term of r.h.s. of (41) from
(39). i

Theorem 1 also shows the codelength of the Bayes
code for an FSMX model, |M| = 1. When an FSMX
model m is assumed although another FSMX model is
true, its codelength is given by (41).

On the other hand, we have the following lemma.
Lemma 5: On Condition 1, for Vm = m*, m € M, we
have

P(z"|m)

Plenm*) =o"(1), a.s. (44)

where 0% (1) is the term such as lim,, o, 07 (1) = =40,
a.s.
Proof: See Appendix B. o
This lemma shows the strong consistency of the model
selection by maximization of the posterior probabil-
ity, whose asymptotic formula for exponential family,
Bayesian information criterion (BIC), was proposed by
Schwarz [11].

From Theorem 1 and Lemma 5, we have the fol-
lowing theorem.
Theorem 2: On Condition 1, we have

m ,0Fm (xn)

Bayes

= —log P(z"|m*, 8% — log P(m*)
e T Y det (6%~ [m*) )
+ ——log — +lo = + o(1),
2 B or T Gk jm) (

a.Ss.

= —log P(z"|m*, %) — log P(m*)
det I(Gkm= |m*)
n
— +1lo = + o(1),
R S

o e
2 8
a.s. (45)
Proof: From Lemma 5 and 3 P(m) = 1, we have

z"|m)P )
_logzpzn m* )
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P(z™|m)P(m)
= —log {1 + ; “P (@ lm*) P(m*)
:—log{1+o )}, a.s. (46)
We have therefore
Lpie (@)
= —log P(z"|m") —log P(m*) — ot (1), a.s.
(47)
Applying Theorem 1, the proof is completed. a

3.4 Expected Codelength

We derive the asymptotic expected codelength of the

Bayes code. At first, we show the following lemma.

Lemma 6: On Condition 1, for m* € M, we have
P(z™m*, 0Fm) k.

B log LT MLO )
% Planimr, 0Fr) T 2

+o(1), (48)

where E* represents the expectation by P(:|m*, §%m=).
Proof: See Appendix C. ]
From this lemma, we have the following theorem.
Theorem 3: On the condition 1, we have
* mG ke n
E LBayes (LU )
= —E*log P(z"|m*, %) —log P(m*)
ke e 11 det I(8%m=|m*)
+ - log—+1Io v
2 Fore T T r0R )

+ o(1),
(49

where I(0Fm~ |m* ) corresponds to the Fisher informa-
tion matrix at %m= |

Proof: In Theorem 2, the asymptotic equation, (45), is
based on almost surely convergence. Then, we can ap-
ply the bounded convergence theorem. Therefore, we
have (49) from Lemma 4 and continuity of I(Okm|m)
and f(6%™|m). O

4. Discussion

We have analyzed the asymptotic codelengths of the
Bayes codes for the individual sequences in 3.3. This
codelengths are also called stochastic complexity, which
are taken to represent the information in the sequences
on a given model class. From Theorem 1, we can see
that the asymptotic codelength of the Bayes code for
the parametric model class coincides with that of the
maximum likelihood code[10].

In 3.4, we have shown the asymptotic expected
codelength of the Bayes code. In [2], Clarke and Barron
discussed the expected codelength of the Bayes code for
the i.i.d. parametric model class. We have generalized
this result for the FSMX model class which is not i.i.d.
source and belongs to the partial nested model classes.
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5. Conclusion

We have discussed the asymptotic codelengths of the
Bayes code for the FSMX model class. The analysis of
the Bayes risk and the minimax risk [3] will be future
work. The results in this paper suggests that the mini-
max redundancy may be achieved by the Jeffreys prior
for the parameters §*= and the uniform prior for FSMX
models m.
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Appendix A: The Proof of Lemma 4

This proof is similar to the discussion in [1], pp.285—
297.

We define L, (§%m|m) = log f (6%~ |z™, m), Bs(6*)
= {Fm € ©Fm|||g*m — GFn|| < &}, and
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$n = = (Lh(@*m)) - (A1)

Then, for V8%~ , a Taylor expansion establishes that
F(6F 12", m)
= F(@% (", m)exp { (6 — 5m)T L (@5 jm) |
exp {%(ekm — Fm)T (I + Rp) L (65 |m)(6%m — ékm)} :
(A-2)
where R,, is given by
Rn = L0 m){ L (6"~ lm)} =1, (A-3)

for some 6%=+ lying between %= and §%~. Here, from
the definition of %=, L/ (6%~ |m) is given by

_ Olog f(6Fm|m)

Ly (0Fmim) = —5—— . (A4
39km ekm:@km

On the other hand, from

1 .

L (0" |m) — 1(§*™|m), a.s. (A-5)
we have

Ly (0% Im){ Ly (6% [m)}

— I(0FF | m){I(6F~|m)} 7}, a.s. (A-6)

From the smoothness of I(6%m|m) and §¥= — 0*n, a.s.,
there exists 6 > 0 such that

I — A(e) < Ly (6% [m){Lq, (6" m)}~*

< I+ Afe), a.s., (A7)

is satisfied for V6%~ e Bs(6*=) and Ve > 0 when n —
oo. It follows that

P, (6) = / F(65 2", m)d6*n, (A-8)
Bs(fkm)

is almost surely bounded above by

F(0% ", m) exp{es 8} | det [ /2(1 — A(e)| 7

1
/ exp{~—sz}dz,
|z|<sn 2

and below by

(A-9)

(8" [a", m) exp{—e;8}| det 2n| /|1 + A(e)|7/?

1
/ exp{——sz}dz,
2| <tn 2

when n — oo, where ¢y is the largest absolute value

of elements in Q%Zmlm), s = 6(1 — @)1/2/l_n1/2

and t,, = 8(1 — a(€)/2/1,"? with a(e) (ale)) and I,

(1) the largest (smallest) eigenvalues of A(e) and S
respectively.
From

(A- 10)
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Le) o

I(6Fm 5.
- ( [m), a.s

(A-11)

we have I, — 0, a.s. and I,
8p — 00, a.s. and t, — oo, a.s..

— 0, a.s., which lead to
Then, when n — oo,

[T — A(e)|Y? exp{—;6} lim P,(6)

< lim fe(€F 2™, m)

: {—det <%L”(ékm|m)> }_1/2 (27)km /2

< T+ A(e)[V2 exp{c6} lim Po(8),  (A-12)

is satisfied almost surely. Here, £~ is given by &fm =
Va(ghn — §n).
If limy, oo Pn(6) = 1, a.s. for Ve > 0 is satisfied,
then
{det I(6F|m)}*/2
' (27r)km/2 ?
a.s. (A-13)

we shall show

lim fg(ékm |z™, m) —

n—oo

is clearly satisfied. Then, at last,
lim,, 00 Pn(6) = 1, a.s. for Ve > 0.
From a simple Taylor expansion, we have

L (6% |m) — Ly, (6% |m)
- ALy, (6% |m)
= (fFm — §hm)T 21 (A 14)
( ) Ak km =@km +

where §%= is a point lying between 8= and 6%~ . From
the same discussion as (36)~(37), there exists a con-
stant ¢s > 0 such that ¢s < || 1L, (8%=+|m)||, a.s., for

g*m € Bs(0¥=) when n — oo, and we have
Ln(ekm|m> - Ln(ékm|m)
o \T
= (6% —0%)" L1, (65 |m)

—

< —ncs

A A R 1/2
< =y {(OFn — 05 )T L (@ m) (6 — 6+
a.s. (A-15)

for 3cs,4 > 0 and 6%~ ¢ Bs(*~). Using this inequa-
tion, we have

/ F(OF 2", m)dg*
©km —Bg(f*)
. . ~1/2
< £(0F |z, m) (det L (§Fm |m)>
/ ex p{—05,¢(sz)1/2}dz (A-16)
|2|>6/T. 12
From (A-12) and [,, — 0, a.s., we have

/ (6% |z, m)doF™ — 0, a.s. (A-17)
Okm —Bg(6*)

We have therefore lim,_,. P,(6) = 1 a.s.,
1s shown. Then the proof is completed.

and (A-13)
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Appendix B: The Proof of Lemma 5

P(z"|m)
P(zm|m*) |
P(z™|m, GF) ( Em, km*) n
og————F—— — | — —
P($n|m*’ gkm*) 2 2

log

F(0Fm |m*) 1/ det I(BFm|m)
- = +o(l), a.s.
f(6%m|m)/ det I(GFm~ |m*)

(A- 18)

for Vm € M.

The equations f(6*~|m) = O(1), a.s. and
det 1(§%=|m) = O(1), a.s. are satisfied, since f(6%|m)
and I(6%m|m) are differentiable and k= — gk q.s.
Therefore from (A- 18), if the equation

P(z™m, 0%m) ki — ke
P(zn|m*, Gm~) 2

logn — —oo0,
a.s. (A-19)
for Vm £ m* is proved, then the proof is completed.

P(z"|m,ékm)

. Fr
P(zm|m,0%m) om

At first, we shall estimate log

[S(m)l-1 g

D IEDIL

7=0 =0

—log P(z"|m, 6%m) log 07

Zj’

(A- 20)

(m) 1/2

4 logl

"L g mw((M) ) ws
n n

. (A-21)

and

—log P(z™|m, 0%m) =
have therefore
—log P(x"|m, 0%m)
— log P(z"|m, ékm)
1/, AT 821 ",
= <9km o ekm> OgP(ﬂ.’) |m:0 )
2

86Fm (00km )T Ok —Bkm
: (é’“m —9"“:1> +0

. « 3
(n Hﬁkm — GFm > ,  a.s.
(A-22)
from Taylor expansion.
Since

1 8%log P(z™|m, 0Fm)
n  Ofkm (89km )T gkm_ékm

1522 it ss ” logGk
n 6% (90km )T

O(n), a.s. is clearly satisfied. We

Qkm :ékm
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50%m T(aek )

1/2
n
- loglogn 12
= I(6"™|m) + O — , a.s. (A-23)

and Corollary 1 are satisfied, we have

—

Qkm :ékm

1 (ékm Gk;)T 8% log P(z™|m, 6F=)
3 B0 (0G%m )T

G 0%
_ _g (ékm - eki‘n)T (6% |m) (9”‘” - 9’“:"') .

3/2
Lo <Qw_> as

nl/2

Qkm :ékm

(A-24)

On the other hand, since

1/2
:O<<M> ) e
n

(A-25)

- -

we have

s - o5

nl/2

3 3/2
_0 (@%) s
(A-26)

From (A-22), we have

P(z"|m, %)
P(x™|m, 6% )
- % (ékm - 9’%)T 1(6m) (é’“m - 9’9%)

3/2
+O(——(loglogn) ), a.s.

nl/2

log

(A-27)

And because /n||§5~ — g%~ || = O((loglog n)?), a.s.
and I(6%=|m) — I(6%m|m), a.s., we have

" (- 05) " 18 m) (8 - 6
= O(loglogn), a.s.

(A-28)
We have therefore

P(z™m,05)  kpy — K
log = — logn
P(z™|m*, §Fm~) 2
P(z™|m, 0Fm) ki = ke
P(zn|m*, §Fm~) 2
+ o(logn), a.s.

= log

logn

(A-29)
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At first, we consider the case P*(z") ¢ HF=. We
obtain
P(z™m, %)

vorm € @F log ————=—=
& P(zn|m, §Fm=)

= —Cn+ o(n),

(A-30)

from (13) and (A-21), where C is some positive con-
stant.
We have therefore
n Nern
log Plz |m’9A ) _ e = o logn
P($n|m*70km*) 2
b — kme

=—Cn— logn + o(n)

(A-31)

— —00, a.S.

for Vm € M, P*(z™) & H"m.
When P*(z") € H*~, the equation
P(a"m, 0Fm) = P(z"|m*, 0%m), (A-32)
is satisfied from the definition. We have therefore

P(a"|m, 0F)  kp — ke

log Planm®, - ) 5 logn
= k—m*;—k@ logn + o(logn)
——oo, a.s. (A-33)
for Vm € M, P*(z™) € H*=. Then (A-19) is satisfied
for Yk, # kp,», and the proof is completed. |

Appendix C: The Proof of Lemma 6

From Corollary 1 and (A- 24), since I(#%~* |m*) is con-
tinuous function, we have

P(w”]m*,‘ékm*)
P(zn|m*, 8Fm)

~ * T * = *
_g (9km* _ ka*> I(ka* |m*) (ka* _ ka*>

3/2
co(lemay -,

/2

log

(A-34)

Above asymptotic equation is almost surely satis-
fied, we can apply the dominated convergence theorem
and acquire the expectation:

P z”!m*,ékm*)

. (
E*log——————
Og P( ,n| * ekm*)
— g™ (e — o [ Geme _ gEl
— 2(9 )I(@ |m)(9 6 )
)3/2
+0 <(10glolgn > . as (A-35)
nt/2
Since the distribution of &Fm* = \/ﬁ(ékm,*_

gkjn*) converges to N (0, I =1 (6%=~|m*)) in law from the
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property of the FSMX model class[5], we have

E*%\/E(ékm* _ Ok:‘n*)TI(ek;* Im*)vn (ékm* _ ekfn*)

=y o). (A-36)
Then the proof is completed. a
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